A Pyrene Maleimide with a Flexible Linker for Sampling of Longer Inter-Thiol Distances by Excimer Formation
نویسندگان
چکیده
Pyrene-containing compounds are commonly used in a number of fluorescence-based applications because they can form excited-state dimers (excimers) by stacking interaction between excited-state and ground-state monomers. Their usefulness arises from the facts that excimer formation requires close proximity between the pyrenes and that the excimer emission spectrum is very different from that of the monomers. One of many applications is to assess proximity between specific sites of macromolecules labeled with pyrenes. This has been done using pyrene maleimide, a reagent that reacts with reduced thiols of cysteines, but its use for structural studies of proteins has been rather limited. This is because the introduction of two cysteines at sufficiently close distance from each other to obtain excimer fluorescence upon labeling with pyrene maleimide requires detailed knowledge of the protein structure or extensive site-directed mutagenesis trials. We synthesized and tested a new compound with a 4-carbon methylene linker placed between the maleimide and the pyrene (pyrene-4-maleimide), with the aim of increasing the sampling distance for excimer formation and making the use of excimer fluorescence simpler and more widespread. We tested the new compound on thiol-modified oligonucleotides and showed that it can detect proximity between thiols beyond the reach of pyrene maleimide. Based on its spectroscopic and chemical properties, we suggest that pyrene-4-maleimide is an excellent probe to assess proximities between cysteines in proteins and thiols in other macromolecules, as well as to follow conformational changes.
منابع مشابه
The extent of pyrene excimer fluorescence emission is a reflector of distance and flexibility: analysis of the segment linking the LDL receptor-binding and tetramerization domains of apolipoprotein E3.
Pyrene is a spatially sensitive probe that displays an ensemble of monomeric fluorescence emission peaks (375-405 nm) and an additional band (called excimer) at ~460 nm when two fluorophores are spatially proximal. We examined if there is a correlation between distance between two pyrenes on an α-helical structure and excimer/monomer (e/m) ratio. Using structure-guided design, pyrene maleimide ...
متن کاملExcimer fluorescence of pyrene-maleimide-labeled tubulin.
Excimer-forming cysteines in tubulin are detected by the presence of excimer fluorescence in N-(1-pyrenyl)maleimide-labeled tubulin. The ratio of excimer/monomer fluorescence of labeled protein remained unchanged upon its dilution. These results indicating that both partner of each pair(s) of cysteine are located in the same subunit. The excimer fluorescence is insensitive to prior treatment of...
متن کاملHighly ordered pyrene π-stacks on an RNA duplex display static excimer fluorescence.
The binding and fluorescence properties of complementary RNA sequences attached to different numbers of pyrenes via one carbon linker at the 2'-O-positions have been investigated. Upon hybridization of the pyrene-modified RNA sequences, the modified RNA duplexes with normal thermal stability are formed, and the pyrene arrays are assembled in an inter-strand manner. Because hypochromic effects i...
متن کاملOptimization of excimer-forming two-probe nucleic acid hybridization method with pyrene as a fluorophore.
A previously presented homogeneous assay method, named the excimer-forming two-probe nucleic acid hybridization (ETPH) method, is based on specific excimer formation between two pyrenes attached at the neighboring terminals of two sequential probe oligonucleotides complementary to a single target. In this study, we investigated assay conditions and optimal molecular design of probes for intense...
متن کاملThe colchicine-binding and pyrene-excimer-formation activities of tubulin involve a common cysteine residue in the beta subunit.
Colchicine binding and pyrene excimer fluorescence of tubulin have been used to identify cysteine residue(s) essential for the colchicine binding activity of the protein. We report here that both the colchicine binding activity and the ability to form pyrene excimers of tubulin decay at an identical rate when the protein ages at 37 degrees C. Glycerol, which stabilizes the colchicine binding si...
متن کامل